
Solvent Effects on theπ* r n Transition of Acetone in Various Solvents: Direct Reaction
Field Calculations

Ferdinand C. Grozema and Piet Th. van Duijnen*
Department of Organic and Molecular Inorganic Chemistry, UniVersity of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands

ReceiVed: December 17, 1997; In Final Form: March 27, 1998

The direct reaction field model was used to calculate the solvent shift of then-π* transition of acetone in
eight different solvents. The computed shifts correspond excellently to experimental values. We found that
dispersion interactions are an essential part of the model for correctly describing the shifts in both polar and
apolar solvents. Improving the quality of the basis set generally improves the results, mainly due to an
increase in electrostatic interactions.

Introduction

Solvent effects play a very important role in chemistry since
most chemical reactions and biological processes take place in
solutions. The properties of molecules and the interactions
between them in solution can differ greatly from the properties
and interactions in vacuum, the state to which most quantum
chemical calculations refer.

A well-known example is the effect of solvents on the
electronic spectra, which has been the subject of many
experimental1-3 theoretical4-8 studies. The importance of these
effects is illustrated by the ET(30) solvent polarity scale9 which
is based on the solvatochromic shifts of then-π* transition in
the pyridiniumN-phenolate betaine dye. Another, computa-
tionally more accessible, example is presented by acetone in
which then-π* transition shows a blue shift in polar solvents
and a red shift in apolar solvents.

As shown in an earlier paper6 the blue shift is caused mainly
by the electrostatic interactions. The solvent shell orientation
is adapted to the electrostatic interactions in the ground state;
the excitation process is much faster than the reorientation of
the solvent shell. Thus the excited-state solute is surrounded
by the solvent shell that was adapted to the ground-state
interactions, and the interaction of the excited-state solute with
the solvent shell will be less favorable than the interaction of
the solvent shell with the ground-state solute. This causes an
increase in excitation energy.

Red shifts inn-π* transitions are caused mainly by disper-
sion effects. The excited state always has a larger polarizability
than the ground state because an electron is promoted to a more
diffuse orbital in which it is more polarizable. Thus the
dispersion interaction of the excited solute with the solvent will
be larger than the dispersion interaction of the ground-state
solute with the solvent. The excitation energy decreases,
resulting in a red shift.

The first attempts to incorporate solvent effects in calculations
are based on a dielectric continuum description10 of the solvent.
These models have been used with reasonable success; however,
there are important limitations. They employ a macroscopic
property of the solvent, the dielectric constant, to model the

interactions on a microscopic scale; this means they can never
accurately describe specific solvent-solute interactions, e.g.,
hydrogen bonding.4,6 Another drawback is the need to rep-
arametrize the model for each different solvent.

These difficulties can be resolved by using explicit solvent
models. A number of these have been developed over the last
years.7,11 Most of them are based on a Lennard-Jones type
force field for the dispersion and short range repulsion terms
and point charges for modeling electrostatic effects. Recently,
polarization effects were added to these models to include
induction interactions;5,8,12however, the explicit polarizabilities
are not used for modeling the dispersion. The Lennard-Jones
parameters are fitted to ground-state interaction energies so no
distinction can be made between dispersion interaction in the
ground state and the excited states without reparametrizing for
the excited states. For this reason these models fail to reproduce
red shifts in then-π* transition of acetone in apolar solvents.

These problems do not appear in our direct reaction field
(DRF)13-16 model that uses explicit polarizabilities for induction
and polarization interactions as well as dispersion. In this paper
we will demonstrate that our model reproduces both blue shifts
and red shifts excellently without reparametrizing for different
solvents or different states. We will describe the main features
of the DRF model and compare them to other models, after
which we will discuss the application of the DRF model to the
solvent shifts in then-π* transition of acetone in eight different
solvents.

Theory

The DRF model is a hybrid QM/MM model in which the
classical part (the solvent shell) is modeled by groups (A,B,...)
of point charges, radii, and polarizabilities on each atom. These
parameters can all be derived from monomer properties, either
from experiment or calculations. Point charges can be calculated
from ab initio wave functions on the monomers (A,B,...) using
a dipole preserving population analysis17 or by fitting charges
to the electrostatic potential.18 For the radii experimental values
van der Waals radii can be used, but calculated values can also
be obtained (e.g., from the quadrupole moment or polarizabili-
ties). Atomic polarizabilities can be obtained by fitting them
to experimental or calculated molecular polarizabilities in a
procedure developed by Thole.19,20
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The total energy of the system consisting of a quantum
mechanically described solute and a discrete classical solvent
is given by:

in which UQM is the expectation value of the vacuum Hamil-
tonian over the nonvacuum wave function. The interactions in
the classical part can be written as:

with νsp ) 1/|rp - rs|, the Coulomb potential inp, brought about
by a source ins, and fsp ) -∇p νsp is the corresponding electric
field. The first two terms are the Coulomb interaction and the
induction interaction (also called ‘screening of the electrostatic
interaction’). q i

A is the ith point charge of classical groupA.
TheArs are elements of the matrixA, which can be considered
as the total polarizability of a system of molecules (see below).
For clarity we note here that in eq 2 all interactions within
monomers are set to zero.

For the classical dispersion interaction, we use the Slater-
Kirkwood expression:

in which t(i;j ) is the interaction tensor for the induced dipoles
at i and j . For the short range repulsion the CHARMM
expression is used:

in which Rj i, ni, andri are the isotropic polarizability, number
of valence electrons, and radius of atomic centeri, respectively,
and rij is the distance between centersi and j. We use the
integral number of valence electrons of an atom and the same
atomic polarizabilities that go into the electrostatic, response,
and dispersion terms, leaving only the atomic radii as indepen-
dent parameters.

Coupling of the Classical and Quantum System.The static
electric field, brought about by the point charges, can easily be
introduced in the solute Hamiltonian. Adding reaction field
effects due to interaction with classical polarizabilities, however,
is more difficult. The coupling of the quantum mechanical
solute and the polarizable solvent system can be done by
performing a so-called coupled-SCF procedure described by
Thompson12 in which the wave function has to be solved from
a nonlinear equation:

Ĥ Q is the normal vacuum Hamiltonian,Ĥ RF is the reac-
tion field Hamiltonian which is dependent on the wave function
itself because it includes the dipole moments induced by the
quantum system (in the classical polarizable system). This
nonlinear equation has to be solved in an iterative scheme in
which first the induced moments are calculated:

fp is the static field inp, f (mq,p) is the field in p due to a
(classically induced) moment inq, andf Q

p is the field inp due
to the quantum system. These induced moments are put into
the reaction field HamiltonianĤ RF, which is then used to
calculate a new wave function which is in turn used to generate
new induced moments, etc., until convergence is reached. In
this way the solute feels the average response of the classical
polarizabilities to the field due to the solute (i.e., the average
reaction field), and the induction interaction between the
quantum system and the classical system can be calculated.

A more elegant approach is presented by thedirect reaction
field model13-16 (DRF) in which the effect of the solvent
polarizability is introduced directly into the vacuum solute
Hamiltonian (H 0):

with H es and H rf the electrostatic and reaction potential
operators. The interaction energy between a quantum mechani-
cally described solute and a system of (classical) point charges
and polarizabilitiesA (i.e., the solvent, see below)sfor a single
determinant, closed shell wave functionsis given by:

In the first two terms of eq 8 we see the electrostatic interactions
of nuclei and electrons with the point charges. The third term
contains the interactions of the point charges with the dipoles
induced by the nuclei and vice versa. The fourth represents
the interaction between the point charges and the dipoles induced
by the electrons and vice versa. The fifth and sixth terms are
the screening of the nuclear repulsion and attraction, respectively
(part of the induction). The seventh term contains the interaction
of each electron with its own induced dipoles, and the eighth is
the interaction of each electron with the dipoles induced by the
other electrons; hence it is a two-electron term. The last term
contains the induction interaction and part of the dispersion.
The scaling factor,γ, is for the dispersion which is discussed
below, andP12 is the permutation operator. If one takesγ )
0, term 7 disappears and in term 8 only the induction part
remains. In order to distinguish between source and recipient
in the expectation values of the fieldse.g.,〈 f (k;s)〉, i.e., the
electric field ats due to electronkswe have made explicit the
electron labels (k,l) and the electronic charge (e) so as to avoid
ambiguity in the signs of the various terms. In eq 8 the cost of
inducing all the dipoles in the classical system has already been
included.

The repulsion term in eq 8 is the same as in eq 4, although
we may optionally get the radii of the QM atoms “on the fly”
instead of fixing them on their vacuum values. The difference
of the expectation values
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contains all first- and second-order contributions usually
obtained whenΨ refers to a supermolecule SCF calculation,
and more. We can rewrite the expectation value ofH rf as:

The first term in eq 10 is the DRF induction interaction. The
term between braces,{ }, the difference between the expectation
value of the DRF Hamiltonian and the average reaction field
term, is theunscaledDRF dispersion interaction. It has been
shown to be just the difference between the screened self-energy
and the screened exchange contribution14 (see eq 8). Moreover
it has been shown6,13,16that this expression approximately equals
the second-order perturbation theory (SOP) expression for
dispersion, apart from a scaling factor:

where Esolute
i and Esolvent

i are the ionization energies of the
quantum mechanical solute and the classical solvent, respec-
tively. We can compare the DRF dispersion to the London
formula for dispersion for a dimer interaction:

where fragment B is treated quantum mechanically in the DRF
dispersion expression. It is clear that the dispersion interaction
not only depends on the polarizability but also on the ionization
potentials of both fragments. The ionization potential of B is
introduced explicitly inγ but is also implicitly present in
∆Udisp

DRFsthrough the wave function used. It should be noted
that the London formula is based on a one-center expansions
i.e., a point polarizabilityswhereas in the DRF interactions
multicenter expansions are used.13 The DRF dispersion expres-
sion therefore gives a much better description.

We redefined the reaction field operator according to eq 11,13

i.e., by scaling withγ the integrals for screening of the one-
electron self-energy and of the two-electron exchange contribu-
tions (see also eq 8). This is only possible if the exchange
interaction is explicitly under control, i.e., only for single-
determinant wave functions. When usingγ ) 0, the wave
function does not feel the effect of dispersion with the classical
system and the method renders in fact the average reaction field
(ARF) method rather than the DRF approach. With this
definition of ARF the functional minimized is the same as that
of the coupled SCF approach and, hence, leads to identical Fock
operators. Thus, although they are constructed along different
paths, they lead to the same SCF wave function.

With γ * 0 the quantum system does feel the effect of
dispersion which will modify the wave function. This in turn
will lead to a somewhat different induction interaction as
illustrated below.

The matrixAsused in eqs 2, 8, and 10sis a (super)matrix
representing the total linear response of the complete discrete
classical part, in which all particles interact self-consistently.
Taking a set of points{p} with polarizabilities{Rp} in a uniform
electric field F0, we have for the induced dipole moment in
point p:

A formal solution for{mp} can be found by collecting the
Npol equations into a single supermatrix equation of dimension
Npol × Npol:

whereF0 and M are 3Npol dimensional vectors andR and T
are square 3Npol × 3Npol matrices. The supervectors and
supermatrices are blocked into 3Npol and 3Npol × 3Npol elements,
respectively: Mp ) mp, Rpq ) Rp∂pq, Tpq ) t(p;q)(l - ∂pq),
and∂pq is the Kronecker delta. Then

may be considered as an ordinary polarizability matrix (but of
an Npol membered system):

A is obtained either by an exact matrix inversion or by solving
the associated linear equations by iteration. We note that eq
16 is a self-consistent solution for any field, e.g., the electric
field of QM during any stage of, e.g., the Hartree-Fock
procedure, and can be expressed in terms of integrals over any
basis set, which can be added to the vacuum Hamiltonian.

The {t(p;q)} are, when appropriate, screened according to
the method described by Thole19 in which (atomic) polariz-
abilities are taken as related to (model) charge distributions,
the widths of which are related to the{Rp}. This leads also to
a consistent screening of the potentials and fields of interaction
for overlapping charge distributions.

In general the polarizabilities are constructed following
Thole’s original recipe and parametrization for obtaining
(molecular) polarizabilities with experimental accuracy. This
model has been reparametrized also for computed polarizabilities
from specific basis sets.20 The advantage of this way of treating
the relay matrix is that only atomic polarizabilities are needed
as input, while changes in geometry will be automatically
reflected inA. Optionally one may reduce parts ofA first to
group polarizabilities so as to reduce the dimensionality of the
problem. For a detailed description of the DRF model and its
implementation, the reader is referred to the paper published
recently by de Vries et al.13

Thus in the DRF model the energy can be obtained as the
expectation value of the DRF Hamiltonian without the need
for an iterative solution scheme. Furthermore the electrons in
the quantum system are directly correlated with the classical
charge distributions modeled by polarizabilities; thus the disper-
sion interaction between classical and quantum system is
included. When a wave function for an excited state is used in
stead of that for the ground state, the dispersion interaction will
be different, so the DRF model allows to model the effect of
dispersion on spectral transitions.

Computational Details

In order to randomly generate nonequilibrium solvent geom-
etries, statistical mechanical Monte Carlo (MC) simulations were
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performed in which the solvent as well as the solute was treated
classically. Both solvent and solute geometries were kept rigid
in the MC sampling. The solute and solvents we used are
sufficiently rigid to justify this simplification. Modeling solutes
and solvents in which considerable changes in the geometry
can be expected, e.g., relatively strong acids like formic acid
or fluoroacetic acid where the proton can be (partly) transferred
to the carbonyl oxygen (experiments have shown very large
blue shifts in these solvents3), should of course include sampling
over the internal degrees of freedom. This requires, however,
a molecular dynamics (MD) approach rather than the MC
method. The gradients, necessary for a DRF/MD treatment,
only just have been coded in our group and are presently being
tested.

The acetone solute was surrounded by 52 solvent molecules
(40 for dioxane, cyclohexane, and benzene) which were kept
inside a sphere of a radius chosen to approximately obtain the
experimental density of the system. The force field we used is
the classical interaction part of our DRF model,16 as given in
eqs 1-4. The point charges were fitted to the electrostatic
potential from ab initio calculations in points selected according
to the CHELPG18 scheme, as implemented in Gaussian 94.21

Atomic polarizabilities were derived from fits to experimental
molecular polarizabilities.19,20

The systems were equilibrated in 500 000 moves. After this,
a data collection run of 100 000 moves was conducted from
which 100 randomly chosen conformations were saved for later
analysis. This procedure is different from the earlier approach,6

in which an QM/MM Monte Carlo simulation was performed
with a limited number of moves (∼15 000), and has the
advantage of sampling a greater part of configuration space at
less computational cost. This new procedure also makes the
use of larger basis sets possible. The spectral transitions in the
saved conformations were then calculated in QM/MM calcula-
tions using the DRF model.13-15 In these calculations the static
potential was treated self-consistently, and the reaction field
effect was calculated as a first-order correction to the energy
(so the wave function is not modified by the reaction field).
That this is justified can be seen from Table 1 where the
contributions to the shift of a single conformation of acetone
in water are compared to the contributions in the case where
the reaction field effects are treated self-consistently also.
Although the different terms differ somewhat, the difference in
the total shift is negligible. Table 1 also shows the values for
the case thatγ ) 0; i.e., we used the average reaction field
approach here. We see that all terms differ somewhat from
the case where dispersion effects are included, but the differ-
ences are very small (the dispersion contribution is zero here
of course). We can conclude that dispersion modifies the wave
function slightly but the effects of this modification on, e.g.,
the induction interaction is negligible: i.e., the induction in the
DRF approach is nearly equal to the induction in the ARF
approach.

The ground state of the acetone solute (S0) was described by
a closed shell RHF wave function and the singlet excited state
(S1) by an open shell ROHF wave function as implemented in
HONDO8.1.22 Although the SCF approximation is rather poor
for excited states, it has been shown earlier6 that it gives
reasonable results when calculating shifts of the maximum. The
vacuum transition energies for then-π* transition are 26 962
and 30 043 cm-1 for the 4-31G and DZP basis, respectively,
where the experimental value is 36 100 cm-1. The scaling
parameters for the dispersion interaction (see eq 11) are listed
in Table 2.

Results and Discussion

We selected acetone to study the solvent effect on spectral
transitions because it was computationally feasible and because
there are abundant experimental data available for comparison.
We selected the two most recent experimental reports1,3 we were
aware of to compile a list of experimental shifts in the solvents
we simulated (see Table 3). Both authors agree on the shifts
in most solvents within 200 cm-1, the value we took as the
uncertainty in the experimental values. This value reflects the
uncertainty in the maximum position of the absorption peaks.
The shifts in then-π* transition, calculated in the 4-31G basis
as well as in Dunning’s polarized double zeta basis set (DZP),23

are listed in Table 3.
As before,6 the computed shift in water (1493 cm-1) is

reasonable, compared to the experimental data,1,3 (1700 cm-1).
The shift in acetonitrile (478 cm-1) agrees much better to the
experimental value (400 cm-1) than the value reported earlier,
probably due to sampling over a larger number of conforma-
tions. The computed values for MeOH and CHCl3, 729 and
123 cm-1, respectively, also agree quite well with the experi-
mental values (850 and 150 cm-1). For dioxane experiments3

show no appreciable shift, and our value of 54 cm-1 is

TABLE 1: Comparison of Treating Reaction Field Effects
as First-Order Correction and Self-Consistently for a Single
Solvent Conformation (4-31G)a

H RF as pert H RF self-cons H RF self-cons,γ ) 0

Eel +2072 +2153 +2144
Edisp -1154 -1179 0
Eind +605 +647 +654
Epol -362 -387 -387
Eq -67 -144 -151
Etot +1094 +1090 +2260

aIn the last column the average reaction field values are given (all
values in cm-1).

TABLE 2: Dispersion Scaling Parameters Computed from
Experimental Ionization Energies (Eq 11)a

γ

molecule S0 S1

water 0.565 0.679
MeCN 0.557 0.671
CCl4 0.543 0.662
CHCl3 0.543 0.657
MeOH 0.528 0.645
dioxane 0.485 0.605
cyclohexane 0.503 0.621
benzene 0.488 0.607

a The S1 state was taken 3.72 eV above S0, the excitation energy in
the DZP basis. Experimental ionization energies were taken from ref
24.

TABLE 3: Computed and Experimental Shifts (cm-1)a

solvent 4-31G basis DZP basis experimentalb

H2O +1253( 463 +1493( 514 +1700( 200
MeCN +345( 353 +478( 390 +400( 200
CCl4 -273( 36 -278( 36 -250( 200
MeOH +536( 794 +729( 862 +850( 200
CHCl3 +79 ( 155 +123( 175 +150( 200
dioxane -32 ( 310 +54 ( 354 0( 200
cyclohexane -953( 73 -400( 200
benzene -743( 205 -650( 200

a Uncertainties in the calculated values are root mean square
deviations over the 100 conformations that were analyzed. Uncertainties
in the experimental values are uncertainties in the position of the
absorption maxima.b Experimental values were taken from refs 1
and 3.
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reasonably close to zero. The red shift in CCl4 (-278 cm-1) is
excellent compared to the experimental value of-250 cm-1

reported by Hayes3 but too low in comparison to the shift
observed by Bayliss1 (-450 cm-1). The red shift in cyclohex-
ane (-953 cm-1) is much larger than the experimental value
of -400 cm-1. Finally the experimental red shift in benzene
(-650 cm-1) is reproduced quite well by our value of-743
cm-1 at the 4-31G level.

The uncertainties for the computed shifts given in Table 3
are root mean square deviations (rms) over the 100 conforma-
tions analyzed. These values do not indicate the error in the
maximum position of the transition but rather reflect the
broadness of the maxima mentioned by Bayliss.1 In polar
solvents the rms deviation is much larger than in apolar ones.
This indicates, that in polar solvents, the shift in the transition
is very much dependent on the orientation of the local dipoles
in the solvent molecules in the first solvent shell, and a broad
variety of orientations are present, causing broad absorption
maxima. In apolar solvents the orientation is not that important
and the deviation is much smaller. This is also evident from
the rms deviations in the contributions to the shifts as shown in
Table 4. The deviation for the electrostatic contribution is, in
all cases where electrostatics are important, by far the most
important contribution to the rms deviation.

An analysis of the contributions to the shifts is given in Table
4. ∆Eel and ∆Edisp denote the difference in electrostatic
interaction (the first two terms on the right-hand side of eq 8)
and dispersion interaction (term 7 and part of term 8 in eq 8)
between the quantum system and the classical system in the
ground state and excited state.∆Eind is a contribution due to
the induction: the interaction between the quantum system and
the moments induced by the quantum system (this interaction
is found in terms 5, 6, and part of term 8 in eq 8).∆Epol consists
of three parts: the interaction between the quantum system and
the moments induced by the classical system (1), the interaction
between the classical system and the moments induced by the

quantum system (2) (these two terms are found in the third and
fourth terms of eq 8), and the cost of inducing all dipoles (3)
(which has already been subtracted from the interaction terms
in eq 8). ∆Eq is the change of the intrinsic excitation energy
of the quantum system, i.e., the difference between expectation
value of the vacuum Hamiltonian over the vacuum wave
function and the expectation value of the vacuum Hamiltonian
over the nonvacuum wave function. This term contains the
polarization cost for the dipole(s) induced in the quantum system
by the classical system.

When analyzing the contributions to the shifts in polar
solvents (H2O, MeCN, and MeOH), it becomes clear that the
dispersion component is essential in the quantitatively correct
description of the excitation energy shift. Ignoring dispersion,
the blue shifts would be overestimated by 1200-1500 cm-1.
This also holds for chloroform for which the blue shift would
have been overestimated by 350 cm-1 without including
dispersion. In 1,4-dioxane the electrostatic contribution, caused
by a quadrupole type interactionsthere is a considerable
negative charge of-0.47 on the oxygen atoms in the point
charge modelsis balanced by the dispersion term to yield a
net zero shift. In the cases of CCl4, cyclohexane, and benzene
there is very little electrostatic interaction, and dispersion
dominates in these solvents, resulting in a red shift.

The effect of increasing basis set quality can be extracted
from Table 4. Use of a better basis set increases the electrostatic
contribution by up to 250 cm-1. The effect on the other
contributions is very small. This can be understood by
examining the vacuum dipole moments and polarizabilities. The
vacuum dipole moments of acetone in the 4-31G basis are 3.57
and 2.48 D for the ground and excited states, respectively. For
the DZP basis these dipole moments are 3.36 and 1.48 D for
the ground and excited states. Thus although the total dipole
moment decreases upon going to a larger basis set (and
approaching the experimental value of 2.88 D24 closer), the
difference between the dipole moment in the ground and excited
states increases; the difference is 1.09 D for the 4-31G basis
and 1.88 D for the DZP basis, leading to a larger difference in
electrostatic interactions between the ground and excited states
in the DZP basis.

When we look at the ground-state polarizabilities in both basis
sets, 30.81 B3 for the 4-31G basis and 33.34 B3 for the DZP
basis,20 we see that the difference is less than 10%, so increasing
the basis set will not have a large effect on the dispersion in
the ground state. Calculating polarizabilities for the excited state
is much more troublesome. Excited-state polarizabilities at the
SCF level tend to become slightly smaller than the ground-
state values where they are expected to be larger. The
polarizabilities for the excited state are 28.26 and 31.83 B3 for
the 4-31G and DZP basis sets, respectively. As noted above,
the dispersion interaction is not only governed by the polariz-
ability but also by the ionization potentials of the solvent and
solute, first of all throughγ where the ionization energies are
explicitly present and also by their implicit presence in
∆Udisp

DRFsas can be seen from eq 12. The ionization potential
for the excited state used inγ was calculated by taking the
excited state 3.72 eVsthe (underestimated) excitation energy
in the DZP basissabove the ground state, which leads to an
overestimated ionization potential for the excited state. It has
been shown earlier6 thatγ is not very sensitive to errors in the
ionization potentials. The overestimated ionization potential
does have an effect on the dispersion interaction due to its
(implicit) presence in∆Udisp

DRF. The underestimated excited-
state polarizability of the solute in∆Udisp

DRF is multiplied by the

TABLE 4: Analysis of the Contributions to the Shiftsa

solvent basis ∆Epol ∆Eind ∆Eel ∆Edisp ∆Eq ∆Etot

H2O DZP -311 +577 +2503 -1204 -72 +1493
((110) ((77) ((526) ((86) ((36) ((514)

4-31G -340 +649 +2266 -1228 -94 +1253
((101) ((84) ((486) ((90) ((45) ((463)

MeCN DZP -336 +519 +1588 -1267 -26 +478
((108) ((64) ((407) ((98) ((18) ((390)

4-31G -372 +591 +1445 -1276 -34 +345
((97) ((59) ((369) ((98) ((22) ((353)

CCl4 DZP -68 +134 -3 -342 +1 -278
((8) ((16) ((18) ((45) ((0) ((36)

4-31G -73 +145 -5 -340 0 -273
((10) ((21) ((16) ((46) ((0) ((36)

MeOH DZP -469 +613 +2127 -1469 -73 +729
((196) ((124) ((953) ((169) ((50) ((862)

4-31G -493 +708 +1915 -1502 -92 +536
((196) ((144) ((888) ((179) ((63) ((794)

CHCl3 DZP -102 +173 +412 -358 -2 +123
((29) ((40) ((170) ((74) ((2) ((175)

4-31G -106 +186 +360 -358 -3 +79
((31) ((47) ((147) ((75) ((3) ((155)

dioxane DZP -432 +566 +1208 -1268 -20 +54
((126) ((37) ((409) ((49) ((16) ((354)

4-31G -481 +663 +1102 -1286 -30 -32
((113) ((42) ((365) ((53) ((21) ((310)

cyclohexane 4-31G-208 +430 -29 -1146 0 -953
((16) ((32) ((42) ((52) ((0) ((73)

benzene 4-31G-271 +468 +401 -1337 -4 -743
((49) ((57) ((208) ((178) ((4) ((205)

a Values are given in cm-1. Values in parentheses are rms deviations
over the conformations analyzed.
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overestimated ionization potential of the SCF wave function
(see eq 12); thus the overestimated ionization potential com-
pensates for the underestimated polarizability. Further improv-
ing the basis set or wave function would increase the excited-
state polarizability, but the ionization potential of this state
would be decreased, leading to a very similar dispersion.
Improving the basis set does not alter the trend of the shifts
observed in different solvents, but in polar solvents the computed
shifts compare significantly better to experimental values.

Our findings disagree with the results of both Thompson8

and Gao,7 who also reproduced blue shifts in polar solvents
quite well; however they did so with a model that did not include
dispersion effects. It will be clear that adding dispersion to
their models will lead to a drastic lowering of the blue shifts,
indicating that their electrostatic contributions are much too
small. This may be caused by the approximate nature of the
wave function they use (semiempirical AM1), which is param-
etrized for heats of formation and not for spectroscopic use.
Furthermore, semiempirical Hamiltonians are known to give a
poor description for intermolecular interactions.25

Conclusions

We have shown that the DRF model gives an excellent
description of the solvent effects on then-π* transition in
acetone, in both polar and apolar solvents without the need for
reparametrization for different solvents. The experimental shifts
are approximated very well. Using a small number of randomly
chosen conformations from an extended classical Monte Carlo
simulation gives results that are comparable to complete QM/
MM calculations but offers the advantage of sampling over a
larger part of configuration space at reduced computational cost.
The contribution of the ubiquitous dispersion is important for
the quantitative description of the shifts in both polar and apolar
solvents. Without inclusion of the dispersion interaction, the
blue shift in polar solvents can be overestimated greatly.

Improving the quality of the basis set does not alter the
qualitative picture, but especially for polar solvents the quantita-
tive agreement with experimental results becomes significantly
better.
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